118-119, First Floor, Sushant Tower, Sector - 56, Gurugram - 122011, Haryana, India.

CERTIFICATE OF ACCREDITATION

(AS PER ISO/IEC 17025:2017)

This is to attest that

M/s EMM TECH CALIBRATION,

Plot No. D1/90, Sanjay Colony, Sector-23, Faridabad (Haryana) -121005, India

Calibration Laboratory

has demonstrated compliance with ISO/IEC Standard 17025:2017, General requirements for the competence of testing and calibration laboratories and supplementary criteria for calibration laboratories.

Certificate Number: CL-111

Issue Date: 30.09.2023 **Valid Until:** 29.09.2025

The certificate remains valid for the Scope of Accreditation as specified in the annexure subject to continued satisfactory compliance to the above standard and the relevant requirements of FDAS. (for scope of accreditation visit website www. fdasindia.org).

DEVI SARAN TEWARI
Director

118-119, First Floor, Sushant Tower, Sector – 56, Gurugram – 122011, Haryana, India.

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

Validity 30.09.2023 to 29.09.2025

Last Amended on

.....

S. No.	Parameter	Calibration Method/	Range	Uncertainty in
		Procedure & Equipment		Measurement
		used as Reference		(±) *
		Standard		

Direct Current Measure Mode				
1	DC Current	Using Digital Multimeter 6½ by Direct	1 μA to 10μA	1 % to 0.20 %
		Method	10 μΑ to 100 μΑ	0.20 % to 0.09 %
			100 μA to 1mA	0.09 % to 0.064 %
			1 mA to 1 A	0.064 % to 0.08 %
			1 A to 3 A	0.08 % to 0.16 %
			3 A to 10 A	0.16 % to 0.20 %
			10 A to 100 A	0.30 %
			100 A to 1000 A	0.50 %
2	Resistance(4 Wire)	Using Micro Ohm Meter & Digital Multimeter 6½ by Direct Method	0.10 m Ohm to1 m Ohm	0.66 % to 0.12 %
			1 m ohm to 1000 m ohm	0.12 %
			1000 m ohm to 100 Ohm	0.12 % to 0.02 %
			100 ohm to 100 k ohm	0.02 %
3	Resistance(2 Wire)	Using Digital Multimeter 6½ by Direct Method	100 k Ohm to 500 k Ohm	0.014 % to 0.03 %
			500 k Ohm to 10 M ohm	0.03 % to 0.05 %
			10 M Ohm to 100 M Ohm	0.05 % to 0.94 %
			100 M ohm to 1 G Ohm	0.94 % to 2.40 %
4	DC Voltage	Using Digital Multi meter 6½ by Direct	1 mV to 10mV	0.42 % to 0.045 %
		Method	10 mV to 100 mV	0.045 % to 0.0086 %
			100 mV to 1000 V	0.0086 %
5	DC High Voltage	Using HV Probe with DMM by Direct Method	1 KV to 35KV	3.10 %

 $118\text{-}119, First\ Floor, Sushant\ Tower, Sector-56, Gurugram-122011, Haryana, India.$

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

S. No.	Parameter	Calibration Method/	Range	Uncertainty in
		Procedure & Equipment		Measurement
		used as Reference		(±) *
		Standard		

1	DC Current	Using Multi Product Calibrator by	1 μA to 10μA	0.65 % to 0.25 %
		Direct Method	10 μA to 330 μA	0.25 % to 0.025 %
			330 μA to 330 mA	0.025 %
			330 mA to 3 A	0.025 % to 0.05 %
			3 A to 10 A	0.05 % to 0.08 %
			10 A to 20 A	0.08 % to 0.25 %
		Using Multi Product Calibrator with	20 A to 50 A	0.25 %
		Current Coil by Direct Method	50 A to 200 A	0.30 %
			200 A to 1000 A	0.40 %
2	DC Voltage	Using Multi Product Calibrator by	1 mV to 330 mV	0.20 % to 0.0085 %
		Direct Method	330 mV to 1000 V	0.009 %
3	DC Power Single phase (10V to 1000V ,0.1A to 20 A)	Using Multi Product Calibrator by Direct Method	1 W to 20 KW	0.94 % to 0.25 %
4	Resistance	Using Multi Product Calibrator by Direct Method	1 ohm to 10 ohm	0.08 % to 0.017 %
			10 ohm to 330 k ohm	0.017 % to 0.014 %
			330 k ohm to 10 M ohm	0.014 % to 0.07 %
			10 M ohm to 330 M ohm	0.07 % to 0.57 %
			330 M ohm to 1000 M ohm	0.57 % to 1.90 %
5	Resistance(4-wire)	Using Multi Product Calibrator, Std. Resistance Box, DC Shunt	0.10 m ohm to 1 m ohm	0.66 % to 0.12 %
		Resistance Micro Ohm Meter &	1 m ohm to 1000 m ohm	0.12 %
		Digital Multimeter 6½ by Direct Method/ Comparison Method	1000 m ohm to 100 ohm	0.12 % to 0.02 %
			100 ohm to 100 k ohm	0.02 %

 $118\text{-}119, First\ Floor, Sushant\ Tower, Sector-56, Gurugram-122011, Haryana, India.$

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

S. No.	Parameter	Calibration Method/ Procedure & Equipment used as Reference Standard	Range	Uncertainty in Measurement (±) *
6	Insulation Resistance	Using HV Mega Ohm Box by Direct	2 M Ohm	3.45 %
		Method	20 M Ohm	3.45 %
			100 M Ohm	3.45 %
			200 M Ohm	4.18 %
			1000 M Ohm	4.21 %
Alternat	ing Current Measure Mode			
1	AC Current @ 50Hz	Three Phase reference Energy	5 mA to 500mA	0.03 %%
		Calibrator by Direct Method	0.50 A to 120 A	0.025 %
2	AC Current@ 50 Hz to 1kHz	Using Digital Multimeter 6½ by	33 μA to 1A	0.66 % to 0.17 %
		Direct Method	1 A to 10 A	0.17 % to 0.26 %
3	AC Current @ 50Hz	Current Transformer & Digital Multi meter 6½ & Direct Method	50 A to 1000 A	0.60 %
4	phase Active /reactive/ Apparent P.F 1 to 0.25(lag/lead) 45to 60Hz,	0, 0	60 W/Var to 108 KW/KVar	0.025 %
	AC Power/ energy Single/ three phase Active / reactive/ Apparent P.F 1 to 0.2(lag/lead) 45to 60Hz, 30 V to 300 V, 0.5A to 10A		3 W/Var to 9000 W/Var	0.034 % to 0.028 %
	AC Power/ energy Single/ three phase Active / reactive/ Apparent P.F 1 to 0.2(lag/lead) 45 to 60Hz, 30 V to 300 V, 5mA to 500mA		0.03 W/Var to 450 W/Var	0.667 % to 0.025 %
5	Inductance@1kHz	Using LCR Meter by Direct Method	100 μH to 1H	0.50 %
6	Capacitance@1kHz	Using LCR Meter by Direct Method	1 nF to 1 μF	0.40 %

 $118\text{-}119, First\ Floor, Sushant\ Tower, Sector-56, Gurugram-122011, Haryana, India.$

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

S. No.	Parameter	Calibration Method/	Range	Uncertainty in
		Procedure & Equipment		Measurement
		used as Reference		(±) *
		Standard		
7	Power Factor@50 to 60 Hz	Using Three Phase Reference Energy	1 lag/lead to 0.10 lag/lead	0.0006 P.F
		Calibrator by Direct Method/		
		Comparison Method		
8	AC Voltage @ 50Hz to 1 KHz	Digital Multi meter 6½ by Direct	1 mV to 10 mV	2.76 % to 0.54 %
		Method	10 mV to 100 mV	0.54 % to 0.12 %
			100 mV to 1V	0.12 %
			1 V to 1000 V	0.11 %
9	AC Voltage @ 50Hz	Three Phase reference Energy Calibrator by Direct Method	30 V to 480 V	0.025 %
10	AC High Voltage @ 50Hz	HV Probe with DMM by Direct Method	1 KV to 28KV	3.50 %
Alternate	Current Source Mode			
1	AC Current @ 50Hz to 1 kHz	50Hz to 1 kHz Using Multi product Calibrator	30 μA to 330 μA	0.58 % to 0.02 %
		by Direct Method	330 μA to 330 mA	0.02 % to 0.05 %
			330 mA to 3A	0.05 % to 0.07 %
			3 A to 10 A	0.07 %
			10 A to 20 A	0.17 %
2	AC Current @ 50Hz	Using Multi product Calibrator	20 A to 200 A	0.46 %
		with CurrentCoil by Direct Method	200 A to 1000 A	0.50 %
3	AC Power/ energy Single/ three phase Active / reactive/ Apparent P.F 1 to 0.25(lag/lead) 45 to 60Hz, 30 V to 300 V, 10A to 120A	•	60 W/Var to 108 KW/KVar	0.025%
	AC Power/ energy Single/ three phase Active / reactive/ Apparent P.F 1 to 0.2(lag/lead) 45 to 60Hz, 30 V to 300 V, 0.5A to 10A		3 W/Var to 9000 W/Var	0.034 % to 0.028 %
	AC Power/ energy Single/ three phase Active /reactive/ Apparent		0.03 W/Var to 450 W/Var	0.667 % to 0.025 %

118-119, First Floor, Sushant Tower, Sector-56, Gurugram-122011, Haryana, India.

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

S. No.	Parameter	Calibration Method/	Range	Uncertainty in
		Procedure & Equipment		Measurement
		used as Reference		(±) *
		Standard		
	1	,		
	P.F 1 to 0.2(lag/lead) 45to 60Hz,			
	30 V to 300 V, 5mA to 500mA			
4	AC Voltage @50Hz to 1kHz	Using Multi Product Calibrator by Direct Method	3 mV to 330 mV	0.91 % to 0.06 %
		Sirectivicanou	330 mV to 1000 V	0.06 %
5	AC Voltage @ 45 to 60 Hz,	Using Three Phase Reference Energy	30 V to 300 V	0.025 %
	la diveta a a Odlalla	Calibrator by Direct Method	400	0.500/
6	Inductance@1kHz	Using Std. Inductance Box &LCR Meter by Compression Method	100 μH to 1H	0.50 %
7	Capacitance@1kHz	Using Std. Capacitance Box &LCR	1 nF to 1 μF	0.50 %
8	AC Resistance@1kHz	Meter by Compression Method Using Std. Resistance Box &LCR	1 Ohm to 100 k Ohm	0.50 %
0	AC Resistance@1kHz	Meter by Compression Method	I Ollili to 100 k Ollili	0.30 %
9	DC Capacitance	Using Multi Product Calibrator by	1 nF to 10 nF	1.73 % to 0.48 %
		Direct Method	10 nF to 100 μF	0.48 % to 0.6 %
10	Power factor 45 to 60 Hz	Using Three Phase Reference Energy	1 lag/lead to 0.1 lag/lead	0.0008 PF
		Calibrator By Comparison Method		
Electrical	Equipment Source Mode	,		
1	Oscilloscope Amplitude (Vertical	Using Multi Product Calibrator by	5 mV to 105 V	1 %
	axisDeflection factor) 1 kHz,	Direct Method		
	1 M ohm	-		0.57.0/ . 0.500/
2	Oscilloscope Time base (Horizontal Axis Deflection factor)		2 ns to 5 s	0.67 % to 0.68%
3		-	1 kHz to 300MHz	2.40 %
3	Oscilloscope Amplitude Bandwidth		1 KHZ (O 300IVIHZ	2.40 %
Low Fre	quency Measure Mode			
1	Ultra-Sonic Pulse velocity	Using Reference Acrylic Blocks &	34.30 μS to 99.50 μS	0.20 μS
	Tester (parameter-time)	IS 516(P5/ Sec-1):2018		
2	Time	Digital Timer & Direct Method	0.1 s to 10 s	0.0091 s

 $118\text{-}119, First\ Floor, Sushant\ Tower, Sector-56, Gurugram-122011, Haryana, India.$

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

S. No.	Parameter	Calibration Method/ Procedure & Equipment used as Reference Standard	Range	Uncertainty in Measurement (±) *
			10 s to 1000 s	0.014 s
			1000 s to 9900 s	0.17 s
			9900 s to 86400 s	1.30 s to 2.77 s
3	Frequency	Digital Multi meter 6½ by Direct	10 Hz to 50 Hz	0.082 % to 0.016 %
		Method	50 Hz to 1000 KHz	0.016 % to 0.012 %
Low Fred	uency Source Mode			
1	Frequency	Multi Product Calibrator by Direct Method	10 Hz to 2MHz	0.07 % to 0.007 %
Simulatio	n Source Mode			
1	pH Indicator -	Using Universal/Process /Multiproduct Calibrator by Simulation method	1 pH to 14 pH	0.01pH
2	Temperature Simulation (Indicator/Controller, PID, Data logger, Scanner, Calibrator, Process meter & Recorder) RTD (PT-100)	Using Precision Multi Product Calibrator / Universal Calibrator by Direct Method	-200 °C to 600 °C	0.16 °C
3	Temperature Simulation (Indicator /Controller, PID, Data logger, Scanner, Calibrator, Process meter & Recorder) E-Type Thermocouple	Using Precision Multi Product Calibrator/ Universal Calibrator by Direct Method	-200 °C to1000 °C	0.50 °C
4	Temperature Simulation (Indicator / Controller, PID, Data logger, Scanner, Calibrator, Process meter & Recorder B-Type Thermocouple	Using Precision Multi Product Calibrator / Universal Calibrator by Direct Method	600 °C to1800 °C	0.56 °C

118-119, First Floor, Sushant Tower, Sector-56, Gurugram-122011, Haryana, India.

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

S. No.	Parameter	Calibration Method/ Procedure & Equipment used as Reference Standard	Range	Uncertainty in Measurement (±) *
5	Temperature Simulation (Indicator/Controller,PID, Data logger, Scanner, Calibrator, Process meter & Recorder J-Type Thermocouple	Using Precision Multi Product Calibrator / Universal Calibrator by Direct Method	-200 °C to 700 °C	0.27 °C
	Temperature Simulation (Indicator/Controller, PID, Data logger, Scanner, Calibrator, Process meter & Recorder K-Type Thermocouple	Using Precision Multi Product Calibrator / Universal Calibrator by Direct Method	-200 °C to1300 °C	0.50°C
	Temperature Simulation (Indicator/Controller,PID, Data logger, Scanner, Calibrator, Process meter & Recorder T-Type Thermocouple	Using Precision Multi Product Calibrator / Universal Calibrator by Direct Method	-200 °C to400 °C	0.30 °C
	Temperature Simulation (Indicator/Controller,PID, Data logger, Scanner, Calibrator, Process meter & Recorder R-Type Thermocouple	Using Precision Multi Product Calibrator / Universal Calibrator by Direct Method	200 °C to 1700 °C	0.57 °C
9	Temperature Simulation (Indicator/Controller,PID, Data logger, Scanner, Calibrator, Process meter & Recorder S-Type Thermocouple	Using Precision Multi Product Calibrator / Universal Calibrator by Direct Method	200 °C to 1700 °C	0.47 °C
	Temperature Simulation (Indicator/Controller,PID, Data logger, Scanner, Calibrator, Process meter & Recorder N- Type Thermocouple	Using Precision Multi Product Calibrator / Universal Calibrator by Direct Method	-200 °C to1300 °C	0.40°C

 $118\text{-}119, First\ Floor, Sushant\ Tower, Sector-56, Gurugram-122011, Haryana, India.$

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

S. No.	Parameter	Calibration Method/	Range	Uncertainty in
		Procedure & Equipment		Measurement
		used as Reference		(±) *
		Standard		

L	Temperature Simulation Universal Calibrator, Process meter RTD (PT-100)	Using Multi Product Calibrator / Universal Calibrator/ Digital Multi meter 6½ by Direct Method	-200 °C to 630 °C	0.14 °C
2	Temperature Simulation Universal Calibrator, Process meter K-Type Thermocouple	Using Multi Product Calibrator / Universal Calibrator by Direct Method	-200 °C to1300 °C	0.50 °C
3	Temperature Simulation Universal Calibrator, Process meter N-Type Thermocouple	Using Multi Product Calibrator / Universal Calibrator by Direct Method	-200 °C to 1300 °C	0.40 °C
4	Temperature Simulation Universal Calibrator, Process meter J-Type Thermocouple	Using Multi Product Calibrator / Universal Calibrator by Direct Method	-200 °C to 1000 °C	0.27 °C
5	Temperature Simulation Universal Calibrator, Process meter T-Type Thermocouple	Using Multi Product Calibrator / Universal Calibrator by Direct Method	-200 °C to 400 °C	0.30 °C
5	Temperature Simulation Universal Calibrator, Process meter R-Type Thermocouple	Using Multi Product Calibrator / Universal Calibrator by Direct Method	0 °C to 1700°C	0.57°C
7	Temperature Simulation Universal Calibrator, Process meter S-Type Thermocouple	Using Multi Product Calibrator / Universal Calibrator by Direct Method	0 °C to 1700°C	0.53 °C

 $118\text{-}119, First\ Floor, Sushant\ Tower, Sector-56, Gurugram-122011, Haryana, India.$

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

S. No.	Parameter	Calibration Method/ Procedure & Equipment used as Reference Standard	Range	Uncertainty in Measurement (±) *
8	Temperature Simulation Universal Calibrator, Process meter B-Type Thermocouple	Using Multi Product Calibrator / Universal Calibrator by Direct Method	0 °C to 1800°C	0.44 °C
9	Temperature Simulation Universal Calibrator, Process meter E-Type Thermocouple	Using Multi Product Calibrator / Universal Calibrator by Direct Method	-200 °C to 1000 °C	0.50°C

 $118\text{-}119, First\ Floor, Sushant\ Tower, Sector-56, Gurugram-122011, Haryana, India.$

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

S. No.	Parameter	Calibration Method/	Range	Uncertainty in
		Procedure & Equipment		Measurement
		used as Reference		(±) *
		Standard		

1	DC Current	Using Digital Mustimeter 6½ by	1 μA to 10μA	1 % to 0.20 %
		Direct Method	10 μA to100 μA	0.20 % to 0.09 %
			100 μA to 1mA	0.09 % to 0.06 %
			1 mA to 1 A	0.064 % to 0.08 %
			1 A to 3 A	0.08 % to 0.16 %
			3 A to 10 A	0.16 % to 0.20 %
			10 A to 100 A	0.30 %
			100 A to 1000 A	0.50 %
2	Resistance(4 Wire)	Using Micro Ohm Meter & Digital Multimeter 6½ by Direct Method	0.10 m ohm to 1 m ohm	0.66 % to 0.12 %
			1 m ohm to 1000 m ohm	0.12 %
			1000 m ohm to 100 ohm	0.12 % to 0.02 %
			100 ohm to 100 k ohm	0.02 %
3	Resistance(2 Wire)	Using Digital Multimeter 6½ by Direct Method	100 k Ohm to 500 k ohm	0.014 % to 0.03 %
			500 k ohm to 10 M ohm	0.03 % to 0.05 %
			10 M ohm to 100 M ohm	0.05 % to 0.94 %
			100 M ohm to 1 G ohm	0.94 % to 2.40 %
4	DC Voltage	Digital Multi meter 6½ by Direct	1 mV to 10 mV	0.42 % to 0.045 %
		Method	10 mV to 100 mV	0.045 % to 0.0086 %
			100 mV to 1000 V	0.0086 %
5	DC High Voltage	HV Probe with DMM & Direct Method	1 KV to 35 KV	3.10 %
irect	Current Source Mode			
1	DC Current	Using Multi Product Calibrator(by	1 μA to 10μA	0.65 % to 0.25 %
		Direct Method	10 μA to 330 μA	0.25 % to 0.025 %
			330 μA to 330 mA	0.025 %

 $118\text{-}119, First\ Floor, Sushant\ Tower, Sector-56, Gurugram-122011, Haryana, India.$

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

Electro-Technical Calibration (At Site)

S. No.	Parameter	Calibration Method/	Range	Uncertainty in
		Procedure & Equipment		Measurement
		used as Reference		(±) *
		Standard		
			330 mA to 3 A	0.025 % to 0.05 %
			3 A to 10 A	0.05 % to 0.08 %
			10 A to 20 A	0.08 % to 0.25 %
		Using Multi Product Calibrator with	20 A to 50 A	0.25 %
		Current Coil by Direct Method	50 A to 200 A	0.30 %
			200 A to 1000 A	0.40 %
2	DC Voltage	Using Multi Product Calibrator by	1 mV to 330 mV	0.20 % to 0.0085 %
		Direct Method	330 mV to 1000 V	0.0085 %
3	DC Power Single phase (10V to 1000V ,0.1A to 20 A)	Using Multi Product Calibrator by Direct Method	1 W to 20 KW	0.10 % to 0.25 %
4	Resistance	nce Using Multi Product Calibrator by Direct Method	1 ohm to 10 ohm	0.08 % to 0.017 %
			10 ohm to 330 k ohm	0.017 % to 0.014 %
			330 k ohm to 10 M ohm	0.014 % to 0.07 %
			10 M ohm to 330 M ohm	0.07 % to 0.57 %
			330 M ohm to 1000 M ohm	0.57 % to 1.90 %
5	Resistance(4-wire)	Using Multi Product Calibrator, Std.	0.10 m ohm to 1 m ohm	0.66 % to 0.12 %
		Resistance Box, DC Shunt Resistance Micro Ohm Meter &	1 m ohm to 1000 m ohm	0.12 %
		Digital Multimeter 6½ by Direct	1000 m ohm to 100 ohm	0.12 % to 0.02 %
		Method/ Comparison Method	100 ohm to 100 k ohm	0.02 %
6	Insulation Resistance	Using HV Mega Ohm Box by Direct	2 M Ohm	3.45 %
		Method	20 M Ohm	3.45 %
			100 M Ohm	3.45 %
			200 M Ohm	4.18 %
			1000 M Ohm	4.21 %

Page **11** of **50**

 $118\text{-}119, First\ Floor, Sushant\ Tower, Sector-56, Gurugram-122011, Haryana, India.$

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

S. No.	Parameter	Calibration Method/	Range	Uncertainty in
		Procedure & Equipment		Measurement
		used as Reference		(±) *
		Standard		

1	AC Current @ 50Hz	Three Phase Reference Energy	5 mA to 500 mA	0.03 %%
		Calibrator by DirectMethod	0.50 A to 120 A	0.025 %
2	AC Current@ 50 Hz to 1kHz	Using Digital Multimeter 6½ by	33 μA to 1A	0.66 % to 0.17 %
		Direct Method	1 A to 10 A	0.17 % to 0.26 %
3	AC Current @ 50Hz	Current Transformer & Digital Multimeter 6½ by Direct Method	50 A to 1000 A	0.60 %
phase Active /reactive/ Appared P.F 1 to 0.25(lag/lead) 45 to 60H 30 V to 300 V, 10A to 120A AC Power/ energy Single/ three phase Active /reactive/ Appared P.F 1 to 0.2(lag/lead) 45 to 60Hz	phase Active /reactive/ Apparent P.F 1 to 0.25(lag/lead) 45to 60Hz,	•	60 W/Var to 108 KW/KVar	0.025 %
	AC Power/ energy Single/ three phase Active /reactive/ Apparent P.F 1 to 0.2(lag/lead) 45to 60Hz, 30 V to 300 V, 0.5A to 10A		3 W/Var to 9000 W/Var	0.034 % to 0.028
	AC Power/ energy Single/ three phase Active /reactive/ Apparent P.F 1 to 0.2(lag/lead) 45to 60Hz, 30 V to 300 V, 5mA to 500mA	0.03 W/Var to 450 W/Var	0.667 % to 0.025	
5	Inductance@1kHz	Using LCR Meter by Direct Method	100 μH to 1H	0.50 %
6	Capacitance@1kHz	Using LCR Meter by Direct Method	1 nF to 1 μF	0.40 %
7	Power Factor@50 to 60 Hz	Using Three Phase Reference Energy Calibrator by Direct Method / Comparison Method	1 lag/lead to 0.1 lag/lead	0.0006 P.F
8	AC Voltage @ 50Hz to 1 KHz	Digital Multi meter 6½ by Direct	1 mV to 10 mV	2.76 % to 0.54 %
		Method	10 mV to 100 mV	0.54 % to 0.12 %
			100 mV to 1V	0.12 %
			1 V to 1000 V	0.11 %

 $118\text{-}119, First\ Floor, Sushant\ Tower, Sector-56, Gurugram-122011, Haryana, India.$

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

Electro-Technical Calibration (At Site)

S. No.	Parameter	Calibration Method/ Procedure & Equipment used as Reference Standard	Range	Uncertainty in Measurement (±) *
9	AC Voltage @ 50Hz	Three Phase reference Energy Calibrator by DirectMethod	30 V to 480 V	0.025 %
10	AC High Voltage @ 50Hz	HV Probe with DMM by Direct Method	1 KV to 28 KV	3.50 %
Alternate	Current Source Mode			
1	AC Current @ 50Hz to 1 kHz	Using Multi product Calibrator	30 μA to 330 μA	0.59 % to 0.02 %
		by DirectMethod	330 μA to 330 mA	0.02 % to 0.05 %
			330 mA to 3A	0.05 % to 0.07 %
			3 A to 10 A	0.07 %
			10 A to 20 A	0.17 %
2	AC Current @ 50Hz	Using Multi Product Calibrator with Current Coil By Direct Method	20 A to 200 A	0.46 %
			200 A to 1000 A	0.50 %
	AC Power/ energy Single/ three phase Active /reactive/ Apparent P.F 1 to 0.25(lag/lead) 45to 60Hz, 30 V to 300 V, 10A to 120A	Comparison Method	60 W/Var to 108 KW/KVar	0.025 %
	AC Power/ energy Single/ three phase Active /reactive/ Apparent P.F 1 to 0.2(lag/lead) 45 to 60Hz, 30 V to 300 V, 0.5A to 10A		3 W/Var to9000 W/Var	0.034 % to 0.028 %
	AC Power/ energy Single/ three phase Active /reactive/ Apparent P.F 1 to 0.2(lag/lead) 45 to 60Hz, 30 V to 300 V, 5mA to 500mA		0.03 W/Var to 450 W/Var	0.667 % to 0.025 %
4	AC Voltage @50Hz to 1kHz	Using Multi Product Calibrator by	3 mV to 330 mV	0.91 % to 0.06 %
		Direct Method	330 mV to 1000 V	0.06 %

Page **13** of **50**

 $118\text{-}119, First\ Floor, Sushant\ Tower, Sector-56, Gurugram-122011, Haryana, India.$

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

S. No.	Parameter	Calibration Method/ Procedure & Equipment used as Reference Standard	Range	Uncertainty in Measurement (±) *
5	AC Voltage @ 45 to 60 Hz,	Using Three Phase Reference Energy Calibrator by Direct Method	30 V to 300 V	0.025 %
6	Inductance@1kHz	Using Std. Inductance Box &LCR Meter by Compression Method	100 μH to 1H	0.50 %
7	Capacitance@1kHz	Using Std. Capacitance Box &LCR Meter by Compression Method	1 nF to 1 μF	0.50 %
8	AC Resistance@1kHz	Using Std. Resistance Box&LCR Meter by Compression Method	1 Ohm to 100 k Ohm	0.50 %
9	DC Capacitance	Using Multi Product Calibrator by	1 nF to 10 nF	1.73 % to 0.48 %
		Direct Method	10 nF to 100 μF	0.48 % to 0.60 %
10	Power factor 45 to 60Hz	Using Three Phase Reference Energy Calibrator by Comparison Method	1 lag/lead to 0.1 lag/lead	0.0008 PF
Low Free	quency Measure Mode			
1	Ultra-Sonic Pulse velocity Tester (Parameter-time)	Using Reference acrylic Blocks & IS 516(P5/ Sec-1):2018	34.30 μS to 99.50 μS	0.20 μS
2	Time	Digital Timer by Direct Method	0.1 s to 10 s	0.0013 s
			10 s to 1000 s	0.014 s
			1000 s to 9900 s	0.17 s
			9900 s to 86400 s	1.3 s to 2.77 s
3	Frequency	Digital Multi meter 6½ by Direct	10 Hz to 50 Hz	0.082 % to 0.016 %
		Method	50 Hz to 1000 KHz	0.016 % to 0.012 %
Low Free	quency Source Mode	<u> </u>		
1	Frequency	Multi Product Calibrator by Direct Method	10 Hz to 2 MHz	0.07 % to 0.007 %

 $118\text{-}119, First\ Floor, Sushant\ Tower, Sector-56, Gurugram-122011, Haryana, India.$

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

S. No.	Parameter	Calibration Method/	Range	Uncertainty in
		Procedure & Equipment		Measurement
		used as Reference		(±) *
		Standard		

1	pH Indicator	Using Universal/Process /Multiproduct Calibrator by Simulation method	1 pH to 14 pH	0.01 pH
2	Temperature Simulation (Indicator/Controller, PID, Data logger, Scanner, Calibrator, Process meter & Recorder) RTD (PT-100)	Using Precision Multi Product Calibrator / Universal Calibrator by Direct Method	-200 °C to 600 °C	0.16 °C
3	Temperature Simulation (Indicator /Controller, PID, Data logger, Scanner, Calibrator, Process meter & Recorder) E-Type Thermocouple	Using Precision Multi Product Calibrator / Universal Calibrator by Direct Method	-200 °C to1000 °C	0.50 °C
4	Temperature Simulation (Indicator / Controller, PID, Data logger, Scanner, Calibrator, Process meter & Recorder B-Type Thermocouple	Using Precision Multi Product Calibrator / Universal Calibrator by Direct Method	600 °C to1800 °C	0.56 °C
5	Temperature Simulation (Indicator/Controller,PID, Data logger, Scanner, Calibrator, Process meter & Recorder J-Type Thermocouple	Using Precision Multi Product Calibrator / Universal Calibrator by Direct Method	-200 °C to 700 °C	0.27 °C
6	Temperature Simulation (Indicator/Controller,PID, Data logger, Scanner, Calibrator, Process meter & Recorder K-Type Thermocouple	Using Precision Multi Product Calibrator / Universal Calibrator by Direct Method	-200 °C to1300 °C	0.50 °C

 $118\text{-}119, First\ Floor, Sushant\ Tower, Sector-56, Gurugram-122011, Haryana, India.$

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

S. No.	Parameter	Calibration Method/ Procedure & Equipment used as Reference Standard	Range	Uncertainty in Measurement (±) *
				_
7	Temperature Simulation (Indicator/Controller,PID, Data logger, Scanner, Calibrator, Process meter & Recorder T-Type Thermocouple	Using Precision Multi Product Calibrator/ Universal Calibrator by Direct Method	-200 °C to400 °C	0.30 °C
8	Temperature Simulation (Indicator/Controller,PID, Data logger, Scanner, Calibrator, Process meter & Recorder R-Type Thermocouple	Using Precision Multi Product Calibrator / Universal Calibrator by Direct Method	200 °C to 1700 °C	0.57 °C
9	Temperature Simulation (Indicator/Controller,PID, Data logger, Scanner, Calibrator, Process meter & Recorder S-Type Thermocouple	Using Precision Multi Product Calibrator / Universal Calibrator by Direct Method	200 °C to 1700 °C	0.47 °C
10	Temperature Simulation (Indicator/Controller,PID, Data logger, Scanner, Calibrator, Process meter & Recorder N-Type Thermocouple	Using Precision Multi Product Calibrator / Universal Calibrator by Direct Method	-200 °C to1300 °C	0.40 °C
Simulatio	n Measure Mode			
1	Temperature Simulation Universal Calibrator, Process meter RTD (PT-100)	Using Multi Product Calibrator / Universal Calibrator/ Digital Multi meter 6½ by DirectMethod	-200 °C to 630 °C	0.14 °C
2	Temperature Simulation Universal Calibrator, Process meter K-Type Thermocouple	Using Multi Product Calibrator / Universal Calibrator by Direct Method	-200 °C to 1300 °C	0.38 °C
3	Temperature Simulation Universal Calibrator, Process meter N-Type Thermocouple	Using Multi Product Calibrator/ Universal Calibrator by Direct Method	-200 °C to 1300 °C	0.40 °C

 $118\text{-}119, First\ Floor, Sushant\ Tower, Sector-56, Gurugram-122011, Haryana, India.$

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

S. No.	Parameter	Calibration Method/ Procedure & Equipment used as Reference Standard	Range	Uncertainty in Measurement (±) *
4	Temperature Simulation Universal Calibrator, Process meter J-Type Thermocouple	Using Multi Product Calibrator / Universal Calibrator by Direct Method	-200 °C to 1000 °C	0.27 °C
5	Temperature Simulation Universal Calibrator, Process meter T-Type Thermocouple	Using Multi Product Calibrator / Universal Calibrator by Direct Method	-200 °C to 400 °C	0.24 °C
6	Temperature Simulation Universal Calibrator, Process meter R-Type Thermocouple	Using Multi Product Calibrator / Universal Calibrator by Direct Method	0 °C to 1700°C	0.57 °C
7	Temperature Simulation Universal Calibrator, Process meter S-Type Thermocouple	Using Multi Product Calibrator / Universal Calibrator by Direct Method	0 °C to 1700°C	0.53 °C
8	Temperature Simulation Universal Calibrator, Process meter B-Type Thermocouple	Using Multi Product Calibrator / Universal Calibrator by Direct Method	0 °C to 1800°C	0.44 °C
9	Temperature Simulation Universal Calibrator, Process meter E-Type Thermocouple	Using Multi Product Calibrator/ Universal Calibrator by Direct Method	-200 °C to 1000 °C	0.50 °C

 $118\text{-}119, First\ Floor, Sushant\ Tower, Sector-56, Gurugram-122011, Haryana, India.$

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

S. No.	Parameter	Calibration Method/	Range	Uncertainty in
		Procedure & Equipment		Measurement
		used as Reference		(±) *
		Standard		

imen	sion			
1	Gauge Block Calibrator	Using Slip Gauge Set	0.50 mm to 100 mm	0.12 μm
	L.C.: 0.01 μm or coarser	(11 PC's) & E AL G-21: 1996		
2	Length Measuring Machine	Using Slip Gauge Set ~K Grade	0.50 mm to 100 mm	0.20 μm
	(Single Axis) L.C.: 0.0001 mm	& IS 2984: 2003 RA 2019 &		
	or coarser	ISO 3650:1998		
		Using Slip Gauge Set ~K Grade,	>100 mm to 300 mm	2.5 μm
		Long Slip Gauge 200 mm &		
		IS 2984 :2003 RA 2019 &		
		ISO 3650:1998 &		
		IS 7014:1973 RA 2020		
3	Slip gauge set	Gauge Block Calibrator & Slip	>0.50 mm to 10 mm	0.09 μm
		Gauge Set ~K Grade & IS 2984 : 2003 RA 2019 &	>10 mm to 50 mm	0.13 μm
		ISO 3650:1998	>50 mm to 75 mm	0.14 μm
		120 3020:1998	>75 mm to 100 mm	0.15 μm
4	Length Bar / Setting Rod /	Length Measuring Machine &	0.50 mm to 100 mm	0.35 μm
	Long Slip Gauge	IS 7014: 1973 RA-2020,	>100 mm to 200 mm	0.60 μm
		IS 2984 : 2003 RA 2019		0.00 μπ
		Length Measuring Machine,	>200 mm to 400 mm	
		Master Ring Gauge &		1.5 μm
		IS 7014: 1973 RA-2020,		
		IS 2984 : 2003 RA 2019		
		Using 2D Height Gauge	>400 mm to 600 mm	2.5 μm
		IS 7014: 1973 RA-2020,		
		IS 2984 : 2003 RA 2019.	4 50	0.22
5	Cylindrical Setting Master	Length Measuring Machine &	1 mm to 50 mm	0.30 μm
-	(Diameter)	IS- 4349 : 1987 RA -2019	F I. C00	2
6	Caliper Checker / Height	Using 2D Height Gauge by	5 mm to 600 mm	3 μm
	Master	comparison method &		
		IS 13907: 1994 RA 2020.		

 $118\text{-}119, First\ Floor, Sushant\ Tower, Sector-56, Gurugram-122011, Haryana, India.$

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

S. No.	Parameter	Calibration Method/	Range	Uncertainty in
		Procedure & Equipment		Measurement
		used as Reference		(±) *
		Standard		
	2D / Linear Height Gauge	Slip Gauge Set, Caliper Checker	5 mm to 600 mm	4.50 μm
	L.C.0.0001mm or courser	& IS 13907: 1994 RA 2020.		
8	Profile Projector/Video	Glass Scale/Slip Gauge set &	0.001 mm to 200 mm	6 μm
	Measuring Machine	JIS B 7184:2021		
	(Parameter-Linear)			
	L.C: 0.0001 µm or coarser			
9	Profile Projector/Video	Angle Gauge Set &	15 to 90°	10 second of arc
	Measuring Machine	JIS B 7184:2021		
	(Parameter-Angular)			
40	Profile Projector/ Microscope	Glass Scale & Digimatic Caliper	10X mm to 100X mm	0.06 %
10	(Parameter -Magnification).	& JIS B 7184:2021		
	Dial Calibration Tester /	Slip Gauge Set, Dial Indicator &	0.5mm to 50 mm	2 μm
11	Micrometer Head- :	IS – 9483: 1993 RA 2020		
	L.C 0.0001 mm or coarser			
12	Extensometers calibrator	Using Slip Gauge set & Dial	Up to 5 mm	0.50 μm
		Gauge (LC-0.0001mm) & IS		
		12872: 2021 Indirect Method		
13	Caliper(Vernier/Dial/Digital,	Slip Gauge Set, Caliper Checker	0.5mm to 1000 mm	8 μm
	Error external jaw, internal	& Long Slip Gauges &		
	jaw and depth, parallelism of	IS 16491(part-1) -2021	>1000 mm to 1500	14.50 μm
	external and internal jaws)		mm	p
	L.C. 0.01mm or coarser			
	Depth Caliper	Using Slip Gauge Set Grade-0	2 mm to 300 mm	15 μm
	(Vernier/Dial/Digital)	& Slip Gauge Set Grade-K,		
	L.C 0.01mm or coarser	Long slip & IS 16491-2:2016,		
		ISO 13385-2:2011		
	External Micrometer (analog/	Using Slip Gauge Set &	0.5mm to 100 mm	1 μm
	digital/ pin /disc/screw	IS 2967: 1983 RA 2019 &		
	thread/caliper/gear tooth/	JIS B 7502:2016		
	tube/crimp height type)			

 $118\text{-}119, First\ Floor, Sushant\ Tower, Sector-56, Gurugram-122011, Haryana, India.$

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

S. No.	Parameter	Calibration Method/	Range	Uncertainty in
		Procedure & Equipment		Measurement
		used as Reference		(±) *
		Standard		
	(Screw error & Error in length			
	of each extension)-L.C 0.001			
	mm or coarser			
	External Micrometer (analog/		>100 mm to 150 mm	1.50 μm
	digital/ pin /disc/screw	Slip Gauges & IS 2967: 1983 RA		
	thread/caliper/gear	2019 & JIS B 7502:2016		
	tooth/tube/crimp height	Using Slip Gauge Set & Long	>150 mm to 300 mm	4.20 μm
	type)- (Screw	Slip Gauges & IS 2967: 1983 RA	>300 mm to 600 mm	9.50 μm
	error & Error in length of each extension)-	2019 & JIS B 7502:2016		·
	L.C 0.01mm or coarser		>600 mm to 1000 mm	18 μm
—	Internal Micrometer (Screw	Length Measuring Machine	upto 200 mm	2 μm
	Error & Error in length of	& IS 2966: 1964 RA 2019	apto 200 mm	2 μ
	each extension)	Length Measuring Machine,	>200 mm to 400 mm	4.30 μm
	L.C 0.001mm or coarser	Master Ring Gauge &	7200 Hilli to 400 Hilli	4.50 μπ
		IS 2966: 1964 RA 2019		
		.5 2500, 250 1 10 (2015		
	Internal Micrometer (Screw	2D Height Gauge & Long Slip	>400 mm to 600 mm	6.20 μm
	Error & Error in length of	Gauge & IS 2966: 1964 RA		
	each extension)	2019		
	L.C 0.01mm or coarser			
	Depth Micrometer	Using Slip Gauge Set	5 mm to 300 mm	3 μm
	(Mech/Digital) (Screw Error & Error in length of each	Grade-0, Slip Gauge Set Grade-K & Long Slip		
	extension)L.C 0.001mm or	JIS B7544:1994 & BS		
	coarser	6468:2008		
	Height Gauge	Slip Gauge Set,	5 mm to 1000 mm	7 μm
	(Vernier/Dial/Digital)	Caliper Checker, Dial test	3 11111 to 1000 111111	/ μιτι
	(Parallelism of scriber to	Indicator & Long Slip Gauges &		
	base)L.C. 0.01mm or coarser	IS 2921:2016 & JIS B7517:1982		
	,			

 $118\text{-}119, First\ Floor, Sushant\ Tower, Sector-56, Gurugram-122011, Haryana, India.$

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

S. No.	Parameter	Calibration Method/ Procedure & Equipment used as Reference Standard	Range	Uncertainty in Measurement (±) *
	Dial Indicator(Dial / Digital) (Hysteresis repeatability	Using Length Measuring Machine & IS 2092:1985 RA	Up to 25 mm	0.70 μm
	accuracy) L.C 0.0001mm or coarser	2019 & JIS B7503:2017	25 to 50 mm	1 μm
	Dial Indicator(Dial / Digital) (Hysteresis repeatability accuracy) L.C 0.001mm or coarser	Using Length Measuring Machine & IS 2092:1985 RA 2019 & JIS B7503:2017	>50 mm to 100 mm	1.20 μm
	Dial Test Indicator (Hysteresis repeatability accuracy) L.C 0.001mm or coarser	Using Length Measuring Machine & IS 11498:1985 RA 2000 & JIS B7533:2017	Up to 2 mm	2 μm
1	Dial Bore Gauge : L.C 0.001mm	Using Length Measuring Machine	up to 1 mm	0.60 μm
	Dial Thickness Gauge/ OD Caliper ,L.C.0.001mm	Using Slip Gauge Set & IS 2092 & JIS B7503:2017	Up to 5 mm	3 µm
	Dial Thickness Gauge/ OD Caliper, L.C.0.01mm		5.0 mm to 100 mm	6 μm
26	Coating Thickness Gauge	Using Master Foil	0.01 mm to 1 mm	3.50 μm
27	Ultrasonic Thickness gauge.	Using Setting round master/slip gauges by Comparison method	0 to 100 mm	10 μm
28	Laser Distance Meter	Using Scale & Tape Calibrator by Comparison method	0 mm to 1000 mm	5 μm
	Electronic Probe with DRO L.C.: 0.0001 mm or coarser	Slip Gauge Set	0 mm to 50 mm	0.50 μm
	Travel of Extensometer Gauge Length	Dial Gauge of 0.0001 mm least count with Extensoeter	0.0001 mm to 50 mm	7 μm

 $118\text{-}119, First\ Floor, Sushant\ Tower, Sector-56, Gurugram-122011, Haryana, India.$

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

S. No.	Parameter	Calibration Method/ Procedure & Equipment used as Reference	Range	Uncertainty in Measurement
		Standard		(±) *
		Standard		
		Calibrator & IS 12872:2021/ ISO 9513:2021		
31	Steel Scale ,L.C.:0.5mm or coarser	Using Scale & Tape Calibrator & IS 1481: 1970 RA 2014	0.50 mm to 1000 mm	27 μm
32	Measuring Tape /Pie Tape L.C.: 1mm or coarser	Using Scale & Tape Calibrator & IS 1269 (Part-1,11) :1997 RA 2018	1 mm to 50 meter	22*L, where L is in meter μm/mtr
	Calibration Slide/Glass Scale/ Graticule and glass grid (Parameter-linear measurement)	Using Profile Projector by comparison method & JIS B 7541:2001	0.005 mm to 100 mm	4 μm
34	Metallurgical /Stereo Microscope- (parameter- Magnification)	Using Glass Scale/Calibration Slide & Eye Piece by comparison method & ISO 10936:2017/ ASTME 1951:2014(RA 2019)	1 X to 1000 X	1.50 %
35	Bevel / Angle Protector/Combination Set(Angle) L.C. 1 (min)	Using Angle Gauge Set & IS 4239: 1970 RA 2011, IS 5812:1970	Up to 180 °	1'
	Bevel / Angle Protector/Combination Set(Angle) L.C. 5 (min)		Up to 180 °	3.20′
37	Sine Center-(Angle, Parallelism)	Using Slip Gauge Set, Angle Gauge set, Dial Test Indicator, 2D Height Gauge & IS 5979: 1981 RA 2017	Up to 300 mm	6 "
38	Sin Bar-(Angle, Centre distance between rollers, Parallelism)	By using Slip Gauge, angle gauge, Dial test Indicator by comparison method & IS 5359: 1987 RA 2019	Up to 300 mm	6 "

 $118\text{-}119, First\ Floor, Sushant\ Tower, Sector-56, Gurugram-122011, Haryana, India.$

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

S. No.	Parameter	Calibration Method/	Range	Uncertainty in
		Procedure & Equipment		Measurement
		used as Reference		(±) *
		Standard		
39	Angle Gauge	Using Sine Bar & Slip Gauge & IS – 6231:1971 RA 2019	Up to 90 °	2.50 "
	Precision Level /Sprit Level Sensitivity 10 μm/m	Electronic Level & IS -5706:1993-RA-2022 & JIS B7510:1993	Up mm to 300 mm	8.50 μm/m
	Angular scale, Angle Measurement, Angle Gauge	Profile Projector & IS 6231:1971 RA 2019	Up to 360 °	16 "
42	Inclinometer L.C.: 0.1° or coarser	Slip Gauge Set & Sine Bar	-90 ° to + 90 °	4.5 '
	Angle Plate/ Box Angle Plate/ Right Angle (Parallelism, Flatness & Squareness)	Slip Gauge Set, Dial Indicator & Granite Square & IS – 6232 :1971 RA 2019, IS-2554: 1971 RA 2020, IS-6973: 1973 RA 2020, IS-6985: 1973 RA 2020, IS-2103:1980 RA 2017	Up to 400 mm	6.9 μm
	Plain Plug Gauge / Setting Plug Gauge (Diameter)	Length Measuring Machine / Dial Indicator with comparator (LC - 0.0001mm) & IS-3455:1971,IS 3485: 1983 RA 2019 & IS 919(part-1):2014 RA 2019, IS -6137: 1983 RA 2019, IS-6244: 1980 RA 2017 & IS 6246:1980 RA 2017	2 mm to 200 mm	0.85 μm
	Plain Ring Gauge / Setting Ring Gauge (Diameter at 4 positions)	Using Length Measuring Machine, Master Ring Gauges & IS 3485: 1983 RA 2019, IS-3455:1971 RA 2020, IS-919(part-1):2014 RA 2019, IS-7876: 1975 RA 2020.	3 mm to 150 mm	1 μm

 $118\text{-}119, First\ Floor, Sushant\ Tower, Sector-56, Gurugram-122011, Haryana, India.$

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

S. No.	Parameter	Calibration Method/ Procedure & Equipment used as Reference Standard	Range	Uncertainty in Measurement (±) *
		- Countries of		
		Using Length Measuring Machine, Master Ring Gauges & IS 3485: 1983 RA 2019, IS-3455:1971 RA 2020, IS-919(part-1):2014 RA 2019, IS-7876: 1975 RA 2020.	>150 mm to 200 mm	1.50 μm
46	Flush Pin Gauge/Width Gauge	Using Length Measuring Machine & IS 3455:1971 RA 2020,IS 919(part-1):2014 RA 2019,	0.10 mm to 200 mm	2.90 μm
47	Snap Gauge	Slip Gauge Set & IS 3477,7876: 1975 RA 2020. & IS 919(part-1):2014 RA 2019,	3 mm to 150 mm	3 μm
		Using Slip Gauge Set ,Linear height gauge & IS 3477,7876: 1975 RA 2020 & IS 919(part-1):2014 RA 2019,	>150 mm to 300 mm	5 μm
	Dial Snap Gauge / Indicating Miicrometer , L.C. 0.001mm or coarser	Using Slip Gauge Set & IS 14271:1995 RA 2020 & JIS B7520:1981	Up to 100 mm	1.30 μm
49	Thread Plug Gauge / W.C.P (Effective Diameter, Major Diameter)	Using Length Measuring Machine & Three Wire Unit & IS 10685: 1983 RA 2019, IS-2334:2001 RA 2019, IS 4218(P-1):2001 RA 2018, IS 6311:1978 RA 2020	1 mm to 100 mm	1 μm
	Thread Ring Gauge / W.C.R (Effective Diameter, Minor Diameter)	Using Length Measuring Machine, Master Ring Gauge & IS 2334:2001 RA 2019, IS 4218(P-1):2001 RA 2018, IS 6311:1978 RA 2020	3.50 mm to 100 mm	2.50 μm

 $118\text{-}119, First\ Floor, Sushant\ Tower, Sector-56, Gurugram-122011, Haryana, India.$

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

S. No.	Parameter	Calibration Method/	Range	Uncertainty in
		Procedure & Equipment		Measurement
		used as Reference		(±) *
		Standard		
51	Measuring Pin Set	Length Measuring Machine/ Dial Indicator with Comparator (LC. 0001mm) & IS -11103:1984 RA 2020, IS 6311:1978 RA2020, IS 4359:2021	0.10 mm to 50 mm	0.50 μm
52	Three wire Unit (Diameter)	Length Measuring Machine & IS- 11103:1984 RA 2020, IS 6311:1978 RA 2020, IS 4359:2021	0.17 mm to 6.50 mm	0.50 μm
	Test Mandrel (Variation in Diameter)	Length Measuring Machine IS 2063:2016 & ISO 230-1:2012	40x150 mm to 12X400mm	0.70 μm
54	Spline Plug Gauge (Dimension over Two Pins)	Using Length Measuring Machine & IS 4966 (PART-	5 mm to 100 mm	4 μm
	Spline Ring Gauge (Dimension between two pins)	2):1969 RA 2019	10 mm to 100 mm	2.50 μm
55	Chamfer Gauge Diameter	Length Measuring Machine	2.50 mm to 50 mm	1 μm
56	Chamfer Gauge Angle	Profile Projector	Up to 360 °	6 "
57	Chamfer Gauge Length		0.10 mm to 100 mm	5.50 μm
58	Filler Gauge	Using Length Measuring Machine & IS – 3179:1990 RA 2020	Up to 1 mm	0.60 μm
	Standard Foil	Using Length Measuring Machine & IS -3179:1990 RA 2020	0.01 mm to 2 mm	0.60 μm
60	Radius Gauge	Using Profile Projector & IS – 5273:1969 RA 2019	0.5 mm to 25 mm	7.50 μm

 $118\text{-}119, First\ Floor, Sushant\ Tower, Sector-56, Gurugram-122011, Haryana, India.$

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

S. No.	Parameter	Calibration Method/	Range	Uncertainty in
		Procedure & Equipment		Measurement
		used as Reference		(±) *
		Standard		
61	Thread Pitch Gauge	Using Profile Projector & IS – 4211:1993 RA 2019	0.1 mm to 6 mm	7.50 μm
62	V-Block, Squareness	Granite Square,, 2D height Gauge with squareness probe , & IS – 2949: 1992,RA 2017	Up mm to 200 mm	4.50 μm
63	V-Block, Symmetricity	Granite Square, Test Mandrel & Dial Indicator, & IS 2949:1992 RA 2017	Up mm to 200 mm	2.60 μm
	V-Block, Parallelism of V- Block	Test Mandrel & Dial Indicator, & IS - 2949: 1992,RA 2017	Up mm to 200 mm	2.60 μm
	Straight Edge(Straightness Measurement)	Using Electronic Level & IS – 2220: 1990 RA 2020, IS-5268:1991 RA 2017, IS-12937:1990 RA 2020	Up mm to 2000.0 mm	8 μm/m
	Surface plate/Comparator base (Flatness Measurement)	Electronic Level, IS 12937:1990 RA 2020 ,IS-2285:2003 RA 2020 ,IS-7327:2003 RA 2019	150x150 mm to 6000x4000 mm	3.12* Sqrt. (L+W) /125 µm/mtr
	Comparator base (Flatness Measurement)	Using Height Gauge and Dial Indicator & IS 12937:1990 RA 2020 ,IS- 2285:2003 RA 2020 , IS-7327:2003 RA 2019	Up to 300 mm	1 μm
	Test Sieve (Aperture Size, Wire dia & Aperture pitch size)	Using Profile Projector / Digimatic Caliper & IS - 460 (PART-1,2&3):2020	32 μm to 10 mm	3.10 μm
	Test Sieve (Aperture Size, Wire dia & Aperture pitch size)	Digimatic Caliper & IS 460 P-1,2020, IS 460 P-2:2020, IS 460 P-3:2020	10 mm to 150 mm	25 μm
	Crushing Value Apparatus-Cylinders-	Using height gauge, Digimatic Caliper, Micrometer	5 mm to 250 mm	0.15 mm

 $118\text{-}119, First\ Floor, Sushant\ Tower, Sector-56, Gurugram-122011, Haryana, India.$

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

S. No.	Parameter	Calibration Method/ Procedure & Equipment used as Reference	Range	Uncertainty in Measurement (±) *
		Standard		
		& IS 2386 (part-IV):1963 RA		
	height, Wall Thickness)	2021 by direct method		
	Plunger-(parameters-			
	Diameter of piston, Stem,			
	Height, Depth of piston,			
	Diameter of hole)Base Plate-			
	(parameters-	Harris Institution of Bistonia	F0*F0*F0	0.42
	Cube mould (parameter- Distance between	Using height gauge, Digimatic	50*50*50 mm to 300*300*300 mm	0.12 mm
	opposite faces, Height of	Calliper by Direct method & IS 10086:2021	10 300 300 300 11111	
	mould, Thickness of wall	13 10086.2021		
	plate, Length/width/thickness			
	of base plate, Deviation from			
	perpendicularity between			
	interior faces and top			
	Aggregate Impact Value	Using Digimatic	2 mm to 400 mm	1.56 mm
	Apparatus: Steel Cup-	Caliper, Mmeasuring tape,		
	• •	Digimatic Micrometer &		
	Steel Hammer-Diameter,	IS 9377-1979 by Direct method		
	length of cylindrical lower	·		
	end, Diameter of shank,			
	Height of fall. Cylindrical			
	Measure-Diameter, Depth,			
73	Cylindrical mould (parameter-	Using height gauge,	upto 150*300 mm	0.50 mm
	Mean Internal Dia, Actual	Digimatic Calliper, Dgital		
	•	Micrometer by Direct method		
	0 ,	& IS 10086:2021		
	plate, Dia.Thickness of base			
	plate, Dia. of capping plate			

 $118\text{-}119, First\ Floor, Sushant\ Tower, Sector-56, Gurugram-122011, Haryana, India.$

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

S. No.	Parameter	Calibration Method/ Procedure & Equipment used as Reference Standard	Range	Uncertainty in Measurement (±) *
	Beam Mould- (Parameter- Length, Width between internal faces, Height, Length, Width, Thickness of base plate, Deviation fromperpandularity between interior faces and top and bottomplanes of Mould)	Using height gauge, Digimatic Calliper,Digital Measuring tape, Digital micrometerby Direct method & IS 10086:2021	100*100*500 mm to 150*150*700 mm	1.61 mm
	Metal Bar Mould- (Parameter- Distances between inner ends of reference points, width between inner surfaces, height.	Using height gauge, Digimatic Calliper, Digital micrometer by Direct method & IS 10086:2021	upto 250*25*25 mm	0.06 mm
	Slump Cone with Rod- (parameter- Bottom and top Diameter, Height)Rod- (Diameter, height)	Using Digimatic Caliper, measuring tape & IS 7320:1974 by Direct method	10 mm to 620 mm	0.16 mm
77	Elongation Gauge- (parameter -Length)	Using electronic Height Gauge, Digimatic Caliper & IS 2386 (part 1):1963 RA 2021 by comparison method	4.70 mm to 81.50 mm	0.03 mm
	Cylindrical Calibrating Container for sand pouring- (parameters- Dia, Depth, Flange width, thickness)Metal trey with Hole(Size, depth, hole size in center).	Using height gauge, Digimatic Caliper, measuring tape, Micrometer & IS 2720 (part 28):1974 RA 2020 by direct method	1 mm to 500 mm	0.70 mm

 $118\text{-}119, First\ Floor, Sushant\ Tower, Sector-56, Gurugram-122011, Haryana, India.$

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

Using Profile Projector, O.02 mm to 100 mm	easurement (±) * 0.30 mm
Standard	
79 Vicat Apparatus: (Parameters-Needle C & F, Dia, effective length excluding hilt,Circular cutting edge dia, depth holdout. Plunger G dia, Length. Graduated scale- Total scale length, L.C. of scale. I 80 LOS Angles-(Parameters-Circumference of cylinder, Diameter of each weights(Abrasion charge). 81 Ball /Diamond cone Indenter (diameter) 82 Ball /Diamond cone Indenter (angle) 83 Template/ Test finger-Nail probe/Articulate test finger probe/ wedge probe Wising Profile Projector, Height Gauge, Digimatic Caliper, Micrometer & IS 5513:1996 RA 2021 By direct method Using Measuring Tape, Digimatic Caliper & IS 10070:1982 RA 2018 by direct method Using LMM & Profile projector by Comparison method & IS 1500(P- 2):2021 & IS 1586(P-2):2018 Up to 150 ° Up to 500 mm Up to 500 mm	0.30 mm
(Parameters-Needle C & F, Dia, effective length excluding hilt, Circular cutting edge dia, depth holdout. Plunger G dia, Length. Graduated scale- Total scale length, L.C. of scale. I 80 LOS Angles-(Parameters- Circumference of cylinder, Diameter of each weights (Abrasion charge). 81 Ball /Diamond cone Indenter (diameter) 82 Ball /Diamond cone Indenter (angle) 83 Template/ Test finger-Nail probe/Articulate test finger probe/ wedge probe Height Gauge, Digimatic Caliper, Micrometer & Us 5513:1996 RA 2021 By direct method By direct method Using Measuring Tape, Digimatic Caliper & Using Measuring Tape, Digimatic Caliper & Using LMM & Profile projector Up to 15 mm Up to 150 ° Up to 500 mm Up to 500 mm	0.30 mm
(Parameters-Needle C & F, Dia, effective length excluding hilt, Circular cutting edge dia, depth holdout. Plunger G dia, Length. Graduated scale- Total scale length, L.C. of scale. I 80 LOS Angles-(Parameters- Circumference of cylinder, Diameter of each weights (Abrasion charge). 81 Ball /Diamond cone Indenter (diameter) 82 Ball /Diamond cone Indenter (angle) 83 Template/ Test finger-Nail probe/Articulate test finger probe/ wedge probe Height Gauge, Digimatic Caliper, Micrometer & Us 5513:1996 RA 2021 By direct method By direct method Using Measuring Tape, Digimatic Caliper & Using Measuring Tape, Digimatic Caliper & Using LMM & Profile projector Up to 15 mm Up to 150° Up to 500 mm Up to 500 mm	0.30 mm
Dia, effective length excluding hilt, Circular cutting edge dia, depth holdout. Plunger G dia, Length. Graduated scale- Total scale length, L.C. of scale. I 80 LOS Angles-(Parameters- Circumference of cylinder, Diameter of each weights(Abrasion charge). 81 Ball /Diamond cone Indenter (diameter) 82 Ball /Diamond cone Indenter (angle) 83 Template/ Test finger-Nail probe/Articulate test finger probe/ wedge probe Caliper, Micrometer & IS 5513:1996 RA 2021 By direct method Wing Measuring Tape, Digimatic Caliper & IS 10070:1982 RA 2018 by direct method Using LMM & Profile projector by Comparison method & IS 1500(P- 2):2021 & IS 1586(P-2):2018 Up to 150 ° Up to 500 mm Digital Caliper, Height Gauge by Direct Method &	
excluding hilt, Circular cutting edge dia, depth holdout. Plunger G dia, Length. Graduated scale- Total scale length, L.C. of scale. I 80 LOS Angles-(Parameters-Circumference of cylinder, Diameter of each weights (Abrasion charge). 81 Ball /Diamond cone Indenter (diameter) 82 Ball /Diamond cone Indenter (angle) 83 Template/ Test finger-Nail probe/Articulate test finger probe/ wedge probe 84 Ball /Diamond cone Indenter (Digital Caliper, Height Gauge by Direct Method & Digital Caliper, Height Gauge Digital Caliper, Height	
edge dia, depth holdout. Plunger G dia, Length. Graduated scale- Total scale length, L.C. of scale. I 80 LOS Angles-(Parameters- Circumference of cylinder, Diameter of each weights(Abrasion charge). 81 Ball /Diamond cone Indenter (diameter) 82 Ball /Diamond cone Indenter (angle) 83 Template/ Test finger-Nail probe/Articulate test finger probe/ wedge probe 840 mm to 1300 mm 40 mm to 1300 mm 40 mm to 1300 mm Using Measuring Tape, Digimatic Caliper & IS 10070:1982 RA 2018 by direct method Using LMM & Profile projector by Comparison method & IS 1500(P- 2):2021 & IS 1586(P-2):2018 Up to 150 ° Up to 500 mm Up to 500 mm	
Plunger G dia, Length. Graduated scale- Total scale length, L.C. of scale. I 80 LOS Angles-(Parameters- Circumference of cylinder, Diameter of each weights(Abrasion charge). 81 Ball /Diamond cone Indenter (diameter) 82 Ball /Diamond cone Indenter (angle) 83 Template/ Test finger-Nail probe/Articulate test finger probe/ wedge probe Plunger G dia, Length. Graduated scale- Total scale length, L.C. of scale. I Using Measuring Tape, Digimatic Caliper & IS 10070:1982 RA 2018 by direct method Up to 15 mm Up to 15 mm Up to 150 ° Up to 150 ° Up to 500 mm Digital Caliper, Height Gauge by Direct Method &	
Graduated scale- Total scale length, L.C. of scale. I 80 LOS Angles-(Parameters- Circumference of cylinder, Diameter of each weights(Abrasion charge). 81 Ball /Diamond cone Indenter (diameter) 82 Ball /Diamond cone Indenter (angle) 83 Template/ Test finger-Nail probe/Articulate test finger probe/ wedge probe Using Measuring Tape, Digimatic Caliper & IS 10070:1982 RA 2018 by direct method Using LMM & Profile projector by Comparison method & IS 1500(P- 2):2021 & IS 1586(P-2):2018 Up to 150 ° Up to 500 mm Digital Caliper, Height Gauge by Direct Method &	
length, L.C. of scale. I 80 LOS Angles-(Parameters-Circumference of cylinder, Diameter of each weights(Abrasion charge). 81 Ball /Diamond cone Indenter (diameter) 82 Ball /Diamond cone Indenter (angle) 83 Template/ Test finger-Nail probe/ Articulate test finger probe/ wedge probe Substitute	
SO LOS Angles-(Parameters-Circumference of cylinder, Diameter of each Weights(Abrasion charge). Using Measuring Tape, Digimatic Caliper & IS 10070:1982 RA 2018 by Weights(Abrasion charge). Using LMM & Profile projector (diameter) Using LMM & Profile projector by Comparison method & IS 1500(P- 2):2021 & Up to 150 °	
Circumference of cylinder, Diameter of each Weights(Abrasion charge). 81 Ball /Diamond cone Indenter (diameter) 82 Ball /Diamond cone Indenter (angle) 83 Template/ Test finger-Nail probe/Articulate test finger probe/ wedge probe Circumference of cylinder, Tape, Digimatic Caliper & IS 10070:1982 RA 2018 by direct method Using LMM & Profile projector by Comparison method & IS 1500(P- 2):2021 & IS 1586(P-2):2018 Up to 150 ° Up to 500 mm Digital Caliper, Height Gauge by Direct Method &	
Diameter of each weights(Abrasion charge). 81 Ball /Diamond cone Indenter (diameter) 82 Ball /Diamond cone Indenter (angle) 83 Template/ Test finger-Nail probe/Articulate test finger probe/ wedge probe S 10070:1982 RA 2018 by direct method	1.21 mm
weights(Abrasion charge). direct method 81 Ball /Diamond cone Indenter (diameter)	
81 Ball /Diamond cone Indenter (diameter) 82 Ball /Diamond cone Indenter (angle) 83 Template/ Test finger-Nail probe/Articulate test finger probe/ wedge probe 84 Ball /Diamond cone Indenter (Digital Caliper, Height Gauge by Direct Method & Up to 15 mm Up to 15 mm Up to 15 mm Up to 150° Up to 150° Up to 500 mm Digital Caliper, Height Gauge by Direct Method & Up to 500 mm	
(diameter) by Comparison method & 82 Ball /Diamond cone Indenter (angle) IS 1500(P- 2):2021 & Up to 150 ° 83 Template/ Test finger-Nail probe/Articulate test finger probe/ wedge probe by Direct Method &	
82 Ball /Diamond cone Indenter (angle) 83 Template/ Test finger-Nail probe/Articulate test finger probe/ wedge probe 84 Discription of the projector of the p	3.20 μm
(angle) 83 Template/ Test finger-Nail probe/Articulate test finger probe/ wedge probe by Direct Method &	
(angle) 83 Template/ Test finger-Nail Using Profile Projector, Up to 500 mm probe/Articulate test finger probe/ wedge probe by Direct Method &	3.30 °
probe/Articulate test finger Digital Caliper, Height Gauge probe/ wedge probe by Direct Method &	
probe/ wedge probe by Direct Method &	26 μm
finger/small child finger IEC 61032:1997, IS	
(Diameter, length, radius). 61010:2010,IS 60950:2020	
84 Template/ Test finger-Nail Using Profile Projector Up to 90 °	20 "
probe/Articulate test finger by Direct Method &	
probe/ wedge probe IEC 61032:1997, IEC	
finger/small child finger 61010:2010,IEC 60950:2020	
(angle)	
85 Inspection fixture/ Relation Using 2D Height Up to 300 mm	20 μm
gauge/CD/PCD Gauge Gauge, Profile Projector,	
(Diameter, length, radius, Caliper & as per relevant	
height, CD). drawing/ specifications	

 $118\text{-}119, First\ Floor, Sushant\ Tower, Sector-56, Gurugram-122011, Haryana, India.$

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

S. No.	Parameter	Calibration Method/ Procedure & Equipment used as Reference Standard	Range	Uncertainty in Measurement (±) *
	Metal Gauge for Flakiness Index (parameter- Length)	Using Profile Projector, Digimatic Caliper & IS 2386 (part 1):1963 RA 2021 Direct Method	4.70 mm to 100.50 mm	39 μm
Acousti 1	cs Sound Level Meter	Using Sound level Calibrator By Comparison	94 dB to 114 dB	2 dB
Density		method		
	Density/ Hydrometer/ Lactometer	Hydrostatic weighing Cukow's method	0.6 g/ml to 2.0 g/ml	0.003 g/ml
Force				
1	Push Pull Gauge	Fixture, Frame, Hangers and Newtonian	10 N to 100 N	1.29 N
		weights Based on VDI/VDE 2624-2.1:2018	100 N to 500 N	1.29 N
	Rubber Hardness Tester for Spring Force (A&D)	Digital Balance and fixture & ASTM D 2240:2017/ ISO 18898:2016	0 Shore to 100 Shore	0.90 Shore
_	Rubber Hardness Tester for Indention depth(A&D)	Micrometer Head & ASTM D 2240:2017/ ISO 18898:2016	0 to 2.50 mm	0.007 mm
Pressure	& Vacuum			
	Digital/Analogue Pressure Gauges ,Differential Pressure Gauges, Transducers/ Transmitters ,Switches	Using Digital Pressure gauges Universal Calibrator DKD-R6-1:2003By Comparison method	0.001 bar to 700 bar	0.23 % of rdg
2	Differential Pressure Gauges, Manometer,	Using Digital Pressure Calibrator DKD-R6-	0.025 Pa to 250 Pa	1.78 % of rdg

 $118\text{-}119, First\ Floor, Sushant\ Tower, Sector-56, Gurugram-122011, Haryana, India.$

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

S. No.	Parameter	Calibration Method/	Range	Uncertainty in
		Procedure & Equipment		Measurement
		used as Reference		(±) *
		Standard		
	Transducers/Transmitters	1:2003 By	>250.0 Pa to 2000 Pa	0.30 % of rdg
	,Switches	Comparison method		
	Absolute Pressure		600 mbar to 1050 mbar	3 mbar
	(Barometer/manometer)	Indicator DKD-R6-1:2003 By		
		Comparison method		
	Digital/Analogue Vacuum	Using Digital	0.0 bar to -0.95 bar	0.80 %
	Gauges, Transducers/	Vacuum gauge, Universal		
	Transmitters, Switches	Calibrator & DKD-R6-2:2002 By		
		Comparison method		
Torque				
1	Torque Wrench (Type I/Class	Torque Transducer	0.5 Nm to 500 Nm	0.75 % rdg
	B,C,D,E) (Type II/class	& indicator with Torque		
	A,B,D,E)	wrench Calibrator,& IS		
		16906:2018		
Volume				
1	Micro Pipette	Distilled Water and balances	20 μl to 1000 μl	0.09 μΙ
		(suitable at 27oC) Gravimetric		
		Method & ISO 8655-6: 2022		
2	Pycnometer	Distilled Water and balances	50ml to 100 ml	0.19 ml
		Gravimetric Method &		
		ISO 4787:2021 &		
		ISO TR 20461:2000		
		specification as per		
		OIML G14:2011,		
		IS 1448 (part-76):2019.		
3	Volumetric Measures	E1 class weights,	1 ml to 10 ml	0.09 μΙ
		Distilled Water and balances	40 4000	0.201
		Gravimetric Method &	10 ml to 1000 ml	0.20 ml
		ISO 4787:2021 &	1000 ml to 10000 ml	3.30 ml
		ISO TR 20461:2000		

 $118\text{-}119, First\ Floor, Sushant\ Tower, Sector-56, Gurugram-122011, Haryana, India.$

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

S. No.	Parameter	Calibration Method/	Range	Uncertainty in
		Procedure & Equipment		Measurement
		used as Reference		(±) *
		Standard		

ass				
1	Electronic weighing Balances - Readability 0.001mg & Coarser	E1 class weights. Calibration of weighing balance & OIML R 76-1: 2006	1 mg to 5g	0.01mg
2	Electronic weighing Balances - Readability 0.01mg & Coarser		>5g to 80 g	0.02mg
3	Electronic weighing Balances - Readability 1.0 mg & Coarser		>80 g to 200 g	0.06mg
4	Electronic weighing Balances - Readability:1.0mg & Coarser		>200g to 2000 g	0.50 mg
5	Electronic weighing Balances - Readability 1.0 mg & Coarser	F1 class weights. Calibration of weighing balance & OIML R 76-1: 2006	>2 kg to 10 kg	0.02g
6	Electronic weighing Balances- Readability 0. 1 g or Coarser		>10 kg to 20 kg	0.06 g
7	Electronic weighing Balances- Readability 1 g or Coarser		>20kg to 50kg	1 g
8	Electronic weighing Balances- Readability: 10g or Coarser		> 50 kg to 100 kg	5 g
9	Electronic weighing Balances- Readability: 10g or coarser		>100 kg to 300 kg	10 g
11	Weight (F2 class and coarser)	Precision Balances (80g	1mg	0.04 mg
		readability 0.01mg) & OIML R 111-1: 2004	2mg	0.04 mg

 $118\text{-}119, First\ Floor, Sushant\ Tower, Sector-56, Gurugram-122011, Haryana, India.$

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

S. No.	Parameter	Calibration Method/ Procedure & Equipment used as Reference Standard	Range	Uncertainty in Measurement (±) *
			5mg	0.04 mg
			10mg	0.04 mg
			20mg	0.04 mg
			50mg	0.04 mg
			100mg	0.017 mg
			200mg	0.017 mg
			500mg	0.015 mg
			1g	0.015 mg
			2g	0.015 mg
			5g	0.015 mg
			10g	0.015 mg
			20g	0.015 mg
		-	50 g	0.05 mg

 $118\text{-}119, First\ Floor, Sushant\ Tower, Sector-56, Gurugram-122011, Haryana, India.$

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

S. No.	Parameter	Calibration Method/ Procedure & Equipment used as Reference Standard	Range	Uncertainty in Measurement (±) *
		E1 class weights & Precision Balances (200g readability	100 g	0.104 mg
		0.1mg) & OIML R 111-1: 2004	200 g	0.112 mg
		E1 class weights & Precision Balances (1200g readability	500 g	0.112 g
		0.01g, & OIMLR 111-1 R :2004	1 kg	0.01 g
12	Weight (MI class and coarser)	F1 class weights & Precision Balances (3Kg readability 0.01g) & OIML R 111-1: 2004	2 kg	0.10 g
		F1 class weights & Precision Balances (6Kg readability 0.1g) & OIML R 111-1: 2004	5 kg	0.10 g
		F1 class weights & Precision Balances (21 Kg readability 0.1g) & OIML R 111-1: 2004	10 kg	0.10 g
		F1 class weights & Precision Balances (21Kg readability 0.1g) & OIML R 111-1: 2004	20 kg	0.10 g
		M1 class weights & Precision Balances (50Kg readability 1g) & OIML R 111- 1: 2004	50 kg	1.60 g
13	Non Standard Weight	E1 class weights & Precision Balances (220g- Readability- 0.1mg) by ABBA Substitution method	1g to 200 g	0.70 mg
		E1 class weights & Precision Balances (1220g- Readability- 0.1g) by ABBA Substitution method	>200 g to 1000 g	0.02g

 $118\text{-}119, First\ Floor, Sushant\ Tower, Sector-56, Gurugram-122011, Haryana, India.$

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

S. No.	Parameter	Calibration Method/ Procedure & Equipment used as Reference Standard	Range	Uncertainty in Measurement (±) *
		F1 class weights & Precision Balances (6Kg readability 0.1g)) by ABBA Substitution method	>1 kg to 5 kg	0.12 g
		F1 class weights & Precision Balances (21Kg-Readability- 0.1g) by ABBA Substitution method	>5 kg to 20 kg	1.60 g
		F1 class weights & Precision Balances (51Kg-Readability- 1g) by ABBA Substitution method.	>20 kg to 50 kg	3 g
14	Newton Weight	E1 class weights & Precision Balances (220g- Readability- 0.1mg) by ABBA Substitution method	1N to 2N	0.70 mg
		E1 class weights & Precision Balances (1220g- Readability- 0.1g) by ABBA Substitution method	>2N to 11N	0.02g
		F1 class weights & Precision Balances (6Kg readability 0.1g)) by ABBA Substitution method	>11 N to 58 N	0.12 g
		F1 class weights & Precision Balances (21Kg-Readability- 0.1g) by ABBA Substitution method	>58 N to 200 N	1.60g

 $118\text{-}119, First\ Floor, Sushant\ Tower, Sector-56, Gurugram-122011, Haryana, India.$

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

Mechanical Calibration (Laboratory Based)

S. No.	Parameter	Calibration Method/ Procedure & Equipment used as Reference Standard	Range	Uncertainty in Measurement (±) *
		F1 class weights & Precision Balances (51Kg-Readability- 1g) by ABBA Substitution method	>200 N to 500 N	3 g
15	Apparatus: Mass of hammer.	Using weighing balance & & Standard weights, IS 9377- 1979 by Direct method	13 kg to 15 kg	1.60 g
16		Using Weighing Balance & Standard weight s IS 10070- 1982 by direct method	380 g to 5050 g	0.06 g
Speed 8	& Acceleration			
1	measurement	Digital Tachometer & Source By Comparison method with using motorized source with	10 rpm to 100 rpm	4 % rdg to 0.40 % rdg
	calibrator/rpm source/ digital	•	100 rpm to 1000 rpm	0.40 % rdg to 0.07 % rdg
	tachometer)		1000 rpm to 99000 rpm	0.07 % of rdg
2	measurement	Using Digital Tachometer & Source By Comparison method	40 rpm to 500 rpm	3.14 % of rdg to 1.71 % of rdg
	(Tacho calibrator/rpm source/ digital tachometer)	& SANASTR45-II-2017	>500 rpm to 3000 rpm	1.71 % of rdg to 0.35 % of rdg

118-119, First Floor, Sushant Tower, Sector-56, Gurugram-122011, Haryana, India.

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

S. No.	Parameter	Calibration Method/	Range	Uncertainty in
		Procedure & Equipment		Measurement
		used as Reference		(±) *
		Standard		

nensi			1	
1	Gauge Block Calibrator L.C.: 0.01 μm or coarser	Using Slip Gauge Set (11 PC's) & E AL G-21: 1996	0.50 mm to 100 mm	0.08 μm
2	(Single Axis)L.C.: 0.0001	Using Slip Gauge Set ~K Grade & IS 2984 : 2003 RA 2019 & ISO 3650:1998	0.50 mm to 100 mm	0.20 μm
		Using Slip Gauge Set ~K Grade, Long Slip Gauge 200 mm & IS 2984 :2003 RA 2019 & ISO 3650:1998 & IS 7014:1973 RA 2020	>100 mm to 300 mm	2.50 μm
3	Caliper Checker / Height Master	Using 2D Height Gauge by comparison method & IS 13907: 1994 RA 2020.	5 to 600 mm	3 μm
5		Slip Gauge Set,Caliper Checker & IS 13907: 1994 RA 2020.	5.0 mm to 600 mm	4.50 μm
6	Profile Projector/Video Measuring Machine (Parameter-Linear) L.C: 0.0001 μm or coarser	Glass Scale/Slip Gauge set & JIS B 7184:2021	0.001 mm to 200 mm	6 μm
7	Profile Projector/Video	Angle Gauge Set & JIS B 7184:2021	15 to 90°	10 second of arc
8	Profile Projector/ Microscope (Parameter -Magnification).	Glass Scale & Digimatic Caliper & JIS B 7184:2021	10X mm to 100X mm	0.06 %
9		Slip Gauge Set, Dial Indicator & IS – 9483: 1993 RA 2020	0.5mm to 50 mm	2 μm

 $118\text{-}119, First\ Floor, Sushant\ Tower, Sector-56, Gurugram-122011, Haryana, India.$

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

S. No.	Parameter	Calibration Method/	Range	Uncertainty in
		Procedure & Equipment		Measurement
		used as Reference		(±) *
		Standard		

	0.0001 mm or coarser			
10	Height Gauge(Vernier/Dial /Digital) (Parallelism of scriber to base)L.C. 0.01mm or coarser	Slip Gauge Set, Caliper Checker, Dial test Indicator & Long Slip Gauges & IS 2921:2016 & JIS B7517:1982	5 mm to 1000 mm	7 μm
11	Travel of Extensometer Gauge Length	Dial Gauge of 0.0001 mm least count with Extenso Meter Calibrator & IS 12872/ISO 9513: 2021	0.0001 mm to 50 mm	7 μm
12	Metallurgical /Stereo Microscope- (parameter- Magnification)	Using Glass Scale/Calibration Slide & Eye Piece by comparison method & ISO 10936:2017/ ASTME 1951:2014(RA 2019)	1 X to 1000 X	1.50 %
13	Sine Center-(Angle, Parallelism)	Using Slip Gauge Set, Angle Gauge set, Dial Test Indicator, 2D Height Gauge & IS 5979: 1981 RA 2017	Up to 300 mm	6 "
14	Straight Edge(Straightness Measurement)	Using Electronic Level & IS – 2220 : 1990 RA 2020, IS 5268:1991 RA 2017, IS 12937:1990 RA 2020	Up mm to 2000 mm	8 μm/m
15	Surface plate/Comparator base (Flatness Measurement)	Electronic Level, IS 12937:1990 RA 2020 ,IS 2285:2003 RA 2020 ,IS 7327:2003 RA 2019	150x150 mm to 6000x4000 mm	1.0* Sqrt. (L+W) /125 μm/mtr
16	Comparator base (Flatness Measurement)	Using Height Gauge and Dial Indicator & IS 12937:1990 RA 2020 ,IS 2285:2003 RA 2020 , IS 7327:2003 RA 2019	Up to 300 mm	1 μm

118-119, First Floor, Sushant Tower, Sector-56, Gurugram-122011, Haryana, India.

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

S. No.	Parameter	Calibration Method/	Range	Uncertainty in
		Procedure & Equipment		Measurement
		used as Reference		(±) *
		Standard		
				_
17	Cylinders-(parameters- Internal dia, height, Wall Thickness)Plunger- (parameters- Diameter of piston, Stem, Height, Depth of piston, Diameter of hole)Base Plate- (parameters-	Using height gauge, Digimatic Caliper, Micrometer & IS 2386 (part-IV):1963 RA 2021 by direct method	5 mm to 250 mm	0.15 mm
18	Cube mould (parameter- Distance between opposite faces, Height of mould, Thickness of wall plate, Length/width/ thickness of base plate, Deviation from perpendicularity between interior faces and top	Using height gauge, Digimatic Calliperby Direct method & IS 10086:2021	50*50*50 mm to 300*300*300 mm	0.12 mm
19	Aggregate Impact Value Apparatus: Steel Cup- Diameter, Depth, Thickness. Steel Hammer- Diameter, length of cylindrical lower end, Diameter of shank, Height of fall. Cylinderical Measure-Diameter, Depth,	Using Digimatic Caliper, measuring tape, Digimatic micrometer & IS 9377-1979 by Direct method	2 mm to 400 mm	1.56 mm
20	Cylindrical mould (parameter- Mean Internal Dia, Actual Internal Dia. in	Using height gauge, Digimatic Calliper, Dgital micrometerby Direct method & IS 10086:2021	Up to 150*300 mm	0.50 mm

 $118\text{-}119, First\ Floor, Sushant\ Tower, Sector-56, Gurugram-122011, Haryana, India.$

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

S. No.	Parameter	Calibration Method/ Procedure & Equipment used as Reference Standard	Range	Uncertainty in Measurement (±) *
	Thickness of wall plate, Dia. Thickness of base plate, Dia. of capping plate			
21	Length, Width between internal faces, Height,	Using height gauge, Digimatic Calliper,Digital Measuring tape, Digital micrometerby Direct method & IS 10086:2021	100*100*500 mm to 150*150*700 mm	1.61 mm
22	Metal Bar Mould- (Parameter- Distances between inner ends of reference points, width between inner surfaces, height.	Using height gauge, Digimatic Calliper, Digital micrometerby Direct method & IS 10086:2021	Up to 250*25*25 mm	0.06 mm
23		Using Digimatic Caliper, measuring tape &IS 7320:1974 by Direct method	10 mm to 620 mm	0.16 mm
24	Elongation Gauge- (parameter -Length)	Using electronic height gauge, Digimatic Caliper & IS 2386 (part 1):1963 RA 2021 by comparison method	4.70 mm to 81.50 mm	0.03 mm
25		Using height gauge, Digimatic Caliper, measuring tape, Micrometer & IS 2720 (part 28):1974 RA 2020 by direct method	1 mm to 500 mm	0.70 mm

 $118\text{-}119, First\ Floor, Sushant\ Tower, Sector-56, Gurugram-122011, Haryana, India.$

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

S. No.	Parameter	Calibration Method/ Procedure & Equipment used as Reference Standard	Range	Uncertainty in Measurement (±) *
	depth, hole size in center).			
26	LoS Angles-(Parameters- Circumference of cylinder, Diameter of each weights(Abrasion charge).	Using Measuring tape, Digimatic Caliper &IS 10070:1982 RA 2018 by direct method	40 mm to 1300 mm	0.55 mm
27	Bench Center (Parallelism & Coaxiality Measurement)	Using Test Mandrel & Dial Indicator & IS 5980:1978 RA 2020.	Up to 500 mm	6 μm
Force				
1	Uniaxial Testing Machine Compression		0.5 N to 5 N	0.55 %
		IS 1828:2022 (Part-1) for class 1 or coarser testing machine	5 N to 2000 KN	0.55 %
		ASTM E4 -21:2021	200 N to 50 KN	0.55 %
2	Uniaxial Testing Machine Tension	Force proving Instrument of Class 1 or better, IS 1828:2022 (Part-1) for class 1 or coarser testing machine	2 N to 50 KN	0.67 %
Hardness				
1	Rockwell/Leeb/Portable Hardness Tester	•	20 HRA to 95 HRA	0.72 HRA
			10 HRBW to 100 HRBW	1.64 HRBW
			10 HRC to 70 HRC	0.72 HRC

 $118\text{-}119, First\ Floor, Sushant\ Tower, Sector-56, Gurugram-122011, Haryana, India.$

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

Parameter	Calibration Method/	Range	Uncertainty in
			Measurement
			(±) *
	Standard		
To: "" +	h	LIBTO CEO LIBIA	2.50.0/
_		UP10 650 HBW	2.50 %
iviacnine (5/750)			
Brinell Hardness Testing	Standard Hardness	UPTO 600 HBW	2.20 %
_	Block, & IS 1500-2:2021/		
	ISO 6506-2:2017 Indirect		
	Method		
Brinell Hardness Testing	Standard Hardness	UPTO 650 HBW	1.75 %
Machine (10/3000)	-		
•		UPTO 800 HV1	2.60 %
Machine (HV1)	, and the second		
•		UPTO 800 HV5	3.50 %
Machine (HV5)	-		
			4.05.04
•		UPTO 800 HV10	1.85 %
Machine (HV10)	-		
Viels ve Hendrese Testine		LIDTO 000 LIV/20	1.05.0/
•		UPTO 800 HV30	1.95 %
iviaciline (nv30)	1		
	Method		
	Brinell Hardness Testing Machine (5/750) Brinell Hardness Testing Machine (2.5/187.5)	Brinell Hardness Testing Machine (5/750) Brinell Hardness Testing Machine (5/750) Brinell Hardness Testing Machine (2.5/187.5) Brinell Hardness Testing Machine (2.5/187.5) Brinell Hardness Testing Machine (10/3000) Brinell Hardness Testing Machine (10/3000) Brinell Hardness Testing Machine (HV1) Vickers Hardness Testing Machine (HV1) Vickers Hardness Testing Standard Hardness Block, & IS 1500-2:2021/ISO 6506-2:2017 Indirect Method Vickers Hardness Testing Standard Hardness Block, IS 1501-2:2020/ISO 6507-2:2018 Indirect Method Vickers Hardness Testing Standard Hardness Block, IS 1501-2:2020/ISO 6507-2:2018 Indirect Method Vickers Hardness Testing Standard Hardness Block, IS 1501-2:2020/ISO 6507-2:2018 Indirect Method Vickers Hardness Testing Standard Hardness Block, IS 1501-2:2020/ISO 6507-2:2018 Indirect Method Vickers Hardness Testing Standard Hardness Block, IS 1501-2:2020/ISO 6507-2:2018 Indirect Method Vickers Hardness Testing Standard Hardness	Brinell Hardness Testing Machine (5/750) Brinell Hardness Testing Machine (5/750) Brinell Hardness Testing Machine (5/750) Brinell Hardness Testing Machine (2.5/187.5) Block, & IS 1500-2:2021/ Indirect Method Brinell Hardness Testing Machine (2.5/187.5) Block, & IS 1500-2:2021/ IsO 6506-2:2017 Indirect Method Brinell Hardness Testing Machine (10/3000) Brinell Hardness Testing Machine (10/3000) Brinell Hardness Testing Machine (10/3000) Brinell Hardness Testing Machine (HV1) Vickers Hardness Testing Standard Hardness UPTO 650 HBW Vickers Hardness Testing Machine (HV1) Vickers Hardness Testing Standard Hardness UPTO 800 HV1 Wickers Hardness Testing Machine (HV5) Block, IS 1501-2:2020/ ISO 6507-2:2018 Indirect Method Vickers Hardness Testing Standard Hardness UPTO 800 HV5 Wickers Hardness Testing Machine (HV10) Standard Hardness UPTO 800 HV10 Vickers Hardness Testing Standard Hardness UPTO 800 HV10 Wickers Hardness Testing Standard Hardness UPTO 800 HV10 Wickers Hardness Testing Standard Hardness UPTO 800 HV10 Wickers Hardness Testing Standard Hardness UPTO 800 HV30 Wickers Hardness Testing Machine (HV30) Wickers Hardness Testing Standard Hardness UPTO 800 HV30 Wickers Hardness Testing Machine (HV30) Wickers Hardness Testing Standard Hardness UPTO 800 HV30

 $118\text{-}119, First\ Floor, Sushant\ Tower, Sector-56, Gurugram-122011, Haryana, India.$

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

S. No.	Parameter	Calibration Method/	Range	Uncertainty in
		Procedure & Equipment		Measurement
		used as Reference		(±) *
		Standard		

orque				
1	Pneumatic/electrical operated Torque screw driver	Torque Calibrator,& IS 16906:2018	0.50 Nm to 5 Nm	1 % rdg
ressure	& Vacuum			
1	Digital/Analogue Pressure Gauges , Differential Pressure Gauges, Transducers/ Transmitters ,Switches	Using Digital Pressure gauges Universal Calibrator DKD-R6-1:2003 by Comparison method	0.001 bar to 700 bar	0.23 % of rdg
2	Differential Pressure Gauges, Manometer, Transducers/ Transmitters , Switches	Using Digital Pressure Calibrator DKD-R6-1:2003 by Comparison method	0.025 Pa to 250 Pa	1.78 % of rdg
		Using Digital Pressure Calibrator DKD-R6-1:2003 by Comparison Method	>250.0 Pa to 2000 Pa	0.30 % of rdg
3	Digital/Analogue Vacuum Gauges, Transducers/ Transmitters, Switches	Using Digital Vacuum gauge, Universal Calibrator & DKD-R6- 2:2002 By Comparison method	0 bar to -0.95 bar	0.80 %
Vlass	- I		l l	
1	Electronic weighing Balances - Readability 0.001mg & Coarser	E1 class weights. Calibration of weighing balance & OIML R 76-1: 2006	1 mg to 5 g	0.01mg

 $118\text{-}119, First\ Floor, Sushant\ Tower, Sector-56, Gurugram-122011, Haryana, India.$

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

S. No.	Parameter	Calibration Method/ Procedure & Equipment used as Reference Standard	Range	Uncertainty in Measurement (±) *
2	Electronic weighing Balances - Readability 0.01mg & Coarser		>5g to 80 g	0.02mg
3	Electronic weighing Balances - Readability 1.0 mg & Coarser		>80 g to 200 g	0.06mg
4	Electronic weighing Balances - Readability :1.0mg & Coarser		>200g to 2000 g	0.50 mg
5	Electronic weighing Balances - Readability 1.0 mg & Coarser	F1 class weights.Calibration of weighing balance & OIML R 76-1: 2006	>2 kg to 10 kg	0.02g
6	Electronic weighing Balances- Readability 0. 1 g or Coarser	F1 class weights.Calibration of weighing balance & OIML R 76-1: 2006	>10 kg to 20 kg	0.06 g
7	Electronic weighing Balances- Readability 1 g or Coarser		>20 kg to 50 kg	1 g
8	Electronic weighing Balances- Readability: 10g or Coarser	F1 & M1 class weights Calibration of weighing balance& OIML R76-1: 2006	>50 kg to 100 kg	5 g
9	Electronic weighing Balances- Readability: 10g or coarser		>100 kg to 300 kg	10 g
Speed &	Acceleration			
1	Rpm Measurement (centrifuge / rpm Indicator/Vibrating M/c	Using Digital Tachometer By direct method with strip & SANASTR45-II-2017	10 rpm to 100 rpm	4.0 % rdg to 0.4 % rdg

 $118\text{-}119, First\ Floor, Sushant\ Tower, Sector-56, Gurugram-122011, Haryana, India.$

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

S. No.	Parameter	Calibration Method/ Procedure & Equipment used as Reference Standard	Range	Uncertainty in Measurement (±) *
	/Los Angles m/c /high speed starrier, Abrasion Testing M/C/ rotating shaker/Washing & Drying M/c / & rpm measurement of equipment's)			
2	Rpm Measurement (centrifuge / rpm Indicator/Vibrating M/c /Los Angles m/c /high speed starrier, Abrasion Testing M/C/ rotating Shaker/Washing & Drying M/c / & rpm measurement of equipment's)	Using Digital Tachometer By direct method with strip & SANASTR45-II-2017	100 rpm to 1000 rpm	0.4 % rdg to 0.07 % rdg
3	Rpm Measurement (centrifuge / rpm Indicator/Vibrating M/c /Los Angles m/c /high speed starrier, Abrasion Testing M/C/ rotating shaker/ Washing & Drying M/c / & rpm measurement of equipment's)	Using Digital Tachometer By direct method with strip & SANASTR45-II-2017	1000 rpm to 99000 rpm	0.07 % of rdg

 $118\text{-}119, First\ Floor, Sushant\ Tower, Sector-56, Gurugram-122011, Haryana, India.$

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

Thermal Calibration (Laboratory Based)

S. No.	Parameter	Calibration Method/	Range	Uncertainty in
		Procedure & Equipment		Measurement
		used as Reference		(±) *
		Standard		

	erature & Humidity			
1	RTD, Thermocouples, With or Without Controller/	6½ Digital Mustimeter /Precision Temperature	-80 °C to 50 °C	0.12 °C
	Indicator/Data logger /Recorder, Temperature Transmitter, Temperature Gauge, Temperature Switch, Glass Thermometer Digital Thermometer	scanner with SSPRT / Liquid Bath, by Comparison Method	50 °C to 250 °C	0.19 °C
2	RTD/Thermocouples, With or without Controller/ Indicator/Data logger /Recorder, Temperature Transmitter, Temperature Switch, Digital Thermometer	6½ Digital Mustimeter/, Precision Temperature scanner with SSPRT / Digital Temperature Indicator with S- Type TC & Dry Block Furnaces by Comparison Method	250 °C to 600 °C	0.25 °C
3	Thermocouples, With or without Controller/	6½ Digital Multimeter/Digital Temperature Indicator with S-	600 °C to 800 °C	1.95 °C
	Indicator/Data logger /Recorder, Temperature Transmitter, Digital Thermometer	Type TC & Dry Block Furnaces by Comparison Method	800 °C to 1200 °C	2.44 °C
4	RTD, Thermocouples, With or Without Controller/ Indicator/Data logger /Recorder, Temperature Transmitter, Temperature Gauge, Digital Thermometer	6½ Digital Multimeter/ Precision Temperature scanner with SSPRT & Liquid Nitrogen at by Comparison Method	-196 °C	0.21 °C

 $118\text{-}119, First\ Floor, Sushant\ Tower, Sector-56, Gurugram-122011, Haryana, India.$

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL - 111)

Thermal Calibration (Laboratory Based)

S. No.	Parameter	Calibration Method/ Procedure & Equipment used as Reference Standard	Range	Uncertainty in Measurement (±) *
5	sensor of Liquid Bath, Oven, GC Oven, Dry Block furnace,	Precision Temperature scanner with SSPRT/Simplex-4 wire, RTD with Indicator By Comparison Method	-80 °C to 600 °C	0.15 °C
6	Temperature Indicator with sensor of Dry Block Furnace/ Muffle Furnace (Single Position calibration)	Digital Temperature Indicator with S- Type TC by Comparison Method	600 °C to 800 °C 800 °C to 1200 °C	1.95 °C 2.50 °C
7.	Non-Contact Type Thermometer (Infrared Thermometer / Digital Pyrometer)	Digital Pyrometer Black Body Furnace by Comparison Method	50 °C to 600 °C 600 °C to 1200 °C	3.50 °C 5.40 °C
8.	Thermo-hygrometer /Data logger /Recorder @ 50% RH	Temperature scanner with SSPRT, Humidity Chamber by Comparison method	10 °C to 50°C	0.19 °C
9.	Digital /Analog Hygrometer, RH sensor with Indicator/ Controller / Data logger / Recorder@25 °C.	Digital RH Indicator with Sensor, Humidity Generator & Chamber By Comparison Method	10 %RH to 95 %RH	1 %RH

 $118\text{-}119, First\ Floor, Sushant\ Tower, Sector-56, Gurugram-122011, Haryana, India.$

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL – 111)

Thermal Calibration (At Site)

S. No.	Parameter	Calibration Method/	Range	Uncertainty in
		Procedure & Equipment		Measurement (±) *
		used as Reference		
		Standard		

Tempe	rature & Humidity			
1	RTD, Thermocouples, With or Without Controller/	/Precision Temperature	-80 °C to 50 °C	0.12 °C
	Indicator/Data logger /Recorder, Temperature Transmitter, Temperature Gauge, Temperature Switch, Glass Thermometer Digital Thermometer	scanner with SSPRT / Liquid Bath, by Comparison Method	50 °C to 250 °C	0.19 °C
2	RTD/Thermocouples, With or without Controller/ Indicator/Data logger /Recorder, Temperature Transmitter, Temperature Switch, Digital Thermometer	6½ Digital Mustimeter/, Precision Temperature scanner with SSPRT / Digital Temperature Indicator with S- Type TC & Dry Block Furnaces by Comparison Method	250 °C to 600 °C	0.25 °C
3	without Controller/	6½ Digital Multimeter/Digital Temperature Indicator with S-	600 °C to 800 °C	1.95 °C
	Indicator/Data logger /Recorder, Temperature Transmitter, Digital Thermometer	Type TC & Dry Block Furnaces by Comparison Method	800 °C to 1200 °C	2.44 °C
4	Indicator/Data logger /Recorder, Temperature	6½ Digital Multimeter/ Precision Temperature scanner with SSPRT & Liquid Nitrogen at by Comparison Method	-196 °C	0.21 °C

 $118\text{-}119, First\ Floor, Sushant\ Tower, Sector-56, Gurugram-122011, Haryana, India.$

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL – 111)

Thermal Calibration (At Site)

S. No.	Parameter	Calibration Method/	Range	Uncertainty in
		Procedure & Equipment		Measurement (±) *
		used as Reference		
		Standard		

	Gauge, Digital Thermometer			
5			-80 °C to 600 °C	0.15 °C
6	•	Digital Temperature Indicator with S- Type TC by Comparison Method	600 °C to 800 °C 800 °C to 1200 °C	1.95 °C 2.50 °C
7	•	•	-80 °C to 50 °C 50 °C to 300 °C	1.10 °C 1.10 °C

118-119, First Floor, Sushant Tower, Sector – 56, Gurugram – 122011, Haryana, India.

S. No.

Parameter

(Multiplications, Multiple

Sensors, Humidity measurement/ Mapping)@25 °C

Range

Uncertainty in

Measurement (±) *

SCOPE OF ACCREDITATION

(Annexure to Certificate of CL – 111)

Thermal Calibration (At Site)

Calibration Method/

Procedure & Equipment

		• •		•
		used as Reference		
		Standard		
	-		l	
8	Dry Block Furnace/ Muffle	Data Logger with	600 °C to 1200 °C	5.50 °C
	Furnace(Multi Position	Thermocouple By Comparison		
	Calibration)	Method		
9	Industrial Furnace	Data Logger with	300 °C to 600 °C	3.60 °C
	(Multi position Calibration)	Thermocouple by Comparison	600 °C to 1200 °C	5.50 °C
		method		
10	Temperature indicator	Using Digital Pyrometer	0 °C to 600 °C	3.35 °C
	with sensor of Black Body		600 °C to 1200 °C	5.40 °C
	Furnace (Single Position			
	calibration			
11		Digital RH Indicator with	10 %RH to 95 %RH	0.90 %RH
	, ,	Sensor		
	Humidity Source, Humidity			
	Calibrator /Generator			
	(single position, Humidity			
	measurement) @(25 +/-			
	2°C) °C			
12		Using Wireless Data Loggers	15 %RH to 95 %RH	2.10 %RH
	Humidity	by Comparison Method		
	Chamber/Humidity			
	Source, Humidity			
	Calibrator/Generator			

Tikodra Parmas Dealing Officer

^{*}Expanded uncertainty expressed in coverage probability of approximately 95 % (coverage factor K=2)